Estimating Differential Quantities using Polynomial fitting of Osculating Jets
نویسندگان
چکیده
This paper addresses the pointwise estimation of differential properties of a smooth manifold S —a curve in the plane or a surface in 3D— assuming a point cloud sampled over S is provided. The method consists of fitting the local representation of the manifold using a jet, and either interpolation or approximation. A jet is a truncated Taylor expansion, and the incentive for using jets is that they encode all local geometric quantities —such as normal, curvatures, extrema of curvature. On the way to using jets, the question of estimating differential properties is recasted into the more general framework of multivariate interpolation/approximation, a well-studied problem in numerical analysis. On a theoretical perspective, we prove several convergence results when the samples get denser. For curves and surfaces, these results involve asymptotic estimates with convergence rates depending upon the degree of the jet used. For the particular case of curves, an error bound is also derived. To the best of our knowledge, these results are among the first ones providing accurate estimates for differential quantities of order three and more. On the algorithmic side, we solve the interpolation/approximation problem using Vandermonde systems. Experimental results for surfaces of 3 are reported. These experiments illustrate the asymptotic convergence results, but also the robustness of the methods on general Computer Graphics models. Key-words: Meshes, Point Clouds, Differential Geometry, Interpolation, Approximation. Estimation des Quantités Différentielles par Ajustement Polynomial des Jets Osculateurs Résumé : Ce rapport concerne l’estimation locale des propriétés différentielles d’une variété lisse S –une courbe dans le plan ou une surface en 3D– à partir d’un nuage de points échantillonnés sur S. La méthde consiste à ajuster la représentation locale de la variété par un jet, en interpolant ou approximant. Un jet est un développement de Taylor tronqué, et l’intérêt des jets est qu’ils codent toutes les quantités géométriques locales –telles que la normale, les courbures, les extrema de courbure. Avec l’utilisation des jets, le problème d’estimation des quantités différentielles est placé dans le cadre plus général de l’interpolation/approximation multivariée, un sujet classique d’analyse numérique. Sur le plan théorique, nous donnons des résultats de convergence lorsque l’échantillonnage est raffiné. Pour les courbes et surfaces, ces résutats sont des estimations asymptotiques avec des vitesses de convergence fonction du degré du jet utilisé. Pour le cas des courbes, une majoration d’erreur est aussi fournie. A notre connaissance, ces résutats sont parmi les premiers fournissant des estimations précises pour les quantités différentielles d’ordre trois et plus. Sur le plan algorithmique, nous traitons le problème d’interpolation/approximation avec des systèmes de Vandermonde. Des résultats expérimentaux pour les surfaces de R3 sont analysés. Ces expérimentations illustrent les résultats de convergence asymptotique, ainsi que la robustesse de la méthode sur des modèles de Computer Graphics. Mots-clés : Maillages, Nuages de Points, Géométrie différentielle, Interpolation, Approximation. Estimating Differential Quantities using Polynomial fitting of Osculating Jets 3
منابع مشابه
ACS Algorithms for Complex Shapes with Certified Numerics and Topology Jet fitting 3: A Generic C++ Package for Estimating the Differential Properties on Sampled Surfaces via Polynomial Fitting
Surfaces of R are ubiquitous in science and engineering, and estimating the local differential properties of a surface discretized as a point cloud or a triangle mesh is a central building block in Computer Graphics, Computer Aided Design, Computational Geometry, Computer Vision. One strategy to perform such an estimation consists of resorting to polynomial fitting, either interpolation or appr...
متن کاملA continuous approximation fitting to the discrete distributions using ODE
The probability density functions fitting to the discrete probability functions has always been needed, and very important. This paper is fitting the continuous curves which are probability density functions to the binomial probability functions, negative binomial geometrics, poisson and hypergeometric. The main key in these fittings is the use of the derivative concept and common differential ...
متن کاملMulti-frequency Polarization Studies of AGN Jets
Throughout most of the history of radio interferometry studies of Active Galactic Nuclei (AGN) using VLBI, attempts to extract physically meaningful information from VLBI observations have been dominated by visibility-based approaches to analysis, such as model fitting of the self-calibrated visibility data. This approach has been extremely valuable in multi-epoch studies of superluminal motion...
متن کاملPolynomial and non-polynomial solutions set for wave equation with using Lie point symmetries
This paper obtains the exact solutions of the wave equation as a second-order partial differential equation (PDE). We are going to calculate polynomial and non-polynomial exact solutions by using Lie point symmetry. We demonstrate the generation of such polynomial through the medium of the group theoretical properties of the equation. A generalized procedure for polynomial solution is pr...
متن کاملPhysical conserved quantities for the axisymmetric liquid, free and wall jets
A systematic way to derive the conserved quantities for the axisymmetric liquid jet, free jet and wall jet using conservation laws is presented. The flow in axisymmetric jets is governed by Prandtl’s momentum boundary layer equation and the continuity equation. The multiplier approach is used to construct a basis of conserved vectors for the system of two partial differential equations for the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003